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‘Quantum core’ interatomic potentials for transition metals
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Abstract

Using tight-binding formalism, we derive a new expression for the energy of interaction between transition metal

atoms. We show that angular interatomic forces result from the environment-dependent splitting of multiplets of

degenerate d-states.
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1. Introduction

Body-centred cubic transition metals and their alloys

are prime candidate materials for fusion power plants,

and the problem of deriving interatomic interaction

potentials for transition metal atoms has recently at-

tracted considerable attention in the field of fusion

materials modelling [1,2]. This interest stems from the

fact that in order to simulate collision cascades gener-

ated by 14.1 MeV fusion neutrons, as well as to study

diffusion of defects generated by irradiation, it is nec-

essary to be able to treat systems containing several

million atoms. Systems of this size are well beyond the

scope of currently available density functional or tight-

binding electronic structure-based methods [3–6].

Most molecular dynamics studies of collision cas-

cades performed so far were carried out using the Fin-

nis–Sinclair potentials [7–9]. The energy of interaction

between atoms in the Finnis–Sinclair model has the form

Etot ¼ �
X

a

f
X
b 6¼a

qðRabÞ
 !

þ 1

2

X
a6¼b

V ðRabÞ; ð1Þ

where the first term describes the attractive part of the

potential, the second term represents pairwise repulsion,

and Rab is the distance between atoms a and b. The

function f ðxÞ in the Finnis–Sinclair model is chosen in
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the form f ðxÞ ¼ ffiffiffi
x

p
, which is related to the functional

form of the expression for the total energy derived using

the second moment approximation in the scalar recur-

sion expansion for the diagonal elements of the tight-

binding Green’s function in the on-site representation

[10].

The relatively simple functional form of Eq. (1) still

leaves considerable freedom in the choice of functions

qðxÞ and V ðxÞ. For example, the recent re-parameteri-

sation by Han et al. [1] of an earlier version of the

Finnis–Sinclair potential for vanadium has shown that,

by altering the shape of functions qðxÞ and V ðxÞ in

comparison with the original parameterisation [8], it is

possible to bring the energy of formation of several

configurations of single interstitial atom defects into

agreement with density functional calculations [5].

In this paper we investigate a different and previously

unexplored route towards deriving a directional inter-

atomic potential describing interaction between atoms in

a transition metal. Similarly to the Finnis–Sinclair

model, our method is based on the second moment

approximation and takes into account virtual hopping

paths of length two, originating from and coming back

to the same atom. The significant difference between the

formulation given below and the Finnis–Sinclair model

is that we now take into account the fact that the

starting group of d-states is degenerate and therefore

the treatment of hopping of electrons requires using the

matrix recursion rather than the scalar recursion ap-

proach.

Past applications of the matrix recursion method

[11,12] only addressed the case of a half-filled d-band.
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This is illustrated, for example, by the use of the trace

operator in Eq. (4) of Ref. [11]. In the case of a half-filled

band the difference between energies evaluated using the

matrix and the scalar recursion approaches is negligible

(this stems from the fact that splitting of a multiplet of

degenerate states does not affect the position of the

centre of gravity of the multiplet). The conclusion about

the relative insignificance of effects associated with the

matrix character of the potential [11,12] may not

therefore be applicable to the case where the average

number Nd of d-electrons per atom differs from Nd ¼ 5.

Below we generalize the Finnis–Sinclair model to the

case of arbitrary filling of the d-band and show how this

gives rise to a quantum correction to the energy of

interaction between atoms in the core region of the

Finnis–Sinclair potential. We also discuss the implica-

tions of the new approach for the treatment of intersti-

tial defects in body-centred cubic vanadium.
Fig. 1. Radial probability distributions of 3p, 3d and 4s states

calculated for a vanadium atom using density functional theory

in the local density approximation. The function RðrÞ represents
the radial part of the solution of the Schr€odinger equation wðrÞ
where wðrÞ ¼ RðrÞY ðh;/Þ. This function is normalised by the

condition
R1
0
r2jRðrÞj2dr ¼ 1. The black arrow indicates the

distance (r � 2:3 �A) between the two nearest atoms in the centre

of a h111i single interstitial atom defect. The white arrow

indicates the shortest distance (r � 2:62 �A) between atoms in

bcc vanadium.
2. Formalism

In this section, using tight-binding formalism, we

attempt to derive the simplest possible functional form

of the many-body short-range potential describing

interaction between atoms in a transition metal and

going beyond the Finnis–Sinclair model (1). If the

atomic states associated with interacting atoms in a

metal are degenerate, the initial system of atomic wave

functions (in our case, the system of five d-orbitals

localised on a given atom) representing the starting

point for the recursion treatment of formation of inter-

atomic bonds must be chosen in such a way that the

change in them under the action of a small applied

perturbation is small [13]. The second-moment expres-

sion for the matrix Green’s function has the form [14,15]

ð0jbGðEÞj0Þ ¼ 1

ðE þ i�ÞbI � 1
Eþi�

ð0j bH 2j0Þ
ð2Þ

where j0Þ is the subspace of five d-orbitals localised on a

given transition metal atom, and bH is the short-range

tight-binding Hamiltonian.

Fig. 1 illustrates the significance of direct overlap

between d-orbitals in the case of interstitial atom defects.

Interatomic bonds in the centre of an interstitial defect

are strongly compressed (the effective degree of volume

compression exceeds 35% [16]) and the directionality of

d–d interactions should be expected to play a more

significant part in the centre of the defect than in the less

distorted regions of the material.

The dependence of the matrix elements of the Ham-

iltonian on the direction of the bond linking the inter-

acting atoms is given by the Slater–Koster equations

[17]. To find the elements of the 5· 5 matrix ð0j bH 2j0Þ
entering Eq. (2), for each element we need to perform a
summation over sets of five orbitals g centred on

neighbouring atoms, for example,

ð0j bH 2j0Þzx;zx ¼
X
g;nei

hzx; 0j bH jg; neiihg; neij bH j0; zxi; ð3Þ

where g denotes the type of a d-orbital g ¼
fxy; zx; yz; x2 � y2; 3z2 � r2g centred on atom nei. To

simplify the fairly lengthy expressions resulting from Eq.

(3) we follow the convention that hopping integrals

(ddr), (ddp) and (ddd) scale as 2:)1:0. In this case we

are left with only one independent function (ddr) that
determines the radial dependence of the bonding part of

the potential, namely

ð0j bH 2j0Þij ¼ ðddrÞ2D2
ijðh;/Þ: ð4Þ

The angular part D2
ijðh;/Þ of the matrix ð0j bH 2j0Þ is

represented by the fifteen independent functions listed in

Appendix A. By averaging D2
ijðh;/Þ over the polar and

azimuthal angles we find that

1

4p

Z
sin hdh

Z
d/D2

ijðh;/Þ ¼
3

10
dij; ð5Þ

where dij is the Kronecker delta symbol. In the limit

where the matrix ð0j bH 2j0Þ entering the expression for the

Green’s function (2) is described by Eq. (5) the denom-
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inator of Eq. (2) has two five-fold degenerate roots.

However, if the full angular character of the matrix

elements D2
ijðh;/Þ is retained, the denominator of

expression (2) has ten distinct non-degenerate roots.
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Fig. 2. Energy–volume curves of body-centred cubic vanadium

calculated using density functional theory in the local density

approximation, the original Finnis–Sinclair potential for

vanadium parameterised by Ackland and Thetford [8], the new

form of the Finnis–Sinclair potential [1], and the quantum core

potential described in the text.
3. The quantum core potential

In the limit where the angular part of the

matrix ð0j bH 2j0Þij is approximated by expression

ð0j bH 2j0Þij ¼ ð3=10ÞðddrÞ2dij that follows from (5), the

effective interaction potential acquires the Finnis–Sin-

clair form. In this case the density of states associated

with the Green’s function (2) is given by

� 1

p
Ið0jbGðEÞj0Þ ¼

bI
2
½dðE � ffiffiffiffiffi

l2

p Þ þ dðE þ ffiffiffiffiffi
l2

p Þ�; ð6Þ

and the attractive part of the energy of interatomic

interaction for Nd < 5 is given by �Nd
ffiffiffiffiffi
l2

p
, where

l2 ¼
3

10

X
b 6¼a

½ðddrÞðRabÞ�2: ð7Þ

In this limit the angular character of matrix elements

ð0j bH 2j0Þ is neglected and the denominator of (2) has two

five-fold degenerate roots. The function qð. . .Þ of the

Finnis–Sinclair model (1) can in this case be identified

with ð3=10ÞN 2
d ðddrÞ2. One should note though that the

Finnis–Sinclair model (1) in fact goes beyond the naive

assumption that the function qð. . .Þ is actually propor-

tional to the square of the tight-binding hopping integral

(ddr). The fact that functions qð. . .Þ and V ð. . .Þ in Eq.

(1) approximate the behaviour of a real material rather

than a model ‘second-moment’ system means that

effectively these two functions include higher-order

terms going beyond (6).

The derivation given above illustrates the limitation

of the model (1), that does not include the second-

moment angular terms given by (A.1). To investigate the

part played by these terms we include them as a cor-

rection added to the core region of the original potential

(1). The function qð. . .Þ of the model (1) is now replaced

by a 5· 5 matrix

qijðr; h;/Þ ¼
1

N 2
d

qðrÞdij þ D2
ijðh;/Þ

�
� 3

10
dij

	
gðrÞ þ � � � ;

ð8Þ

where the second ‘quantum core’ term is chosen to have

a functional form somewhat resembling that of the

quadrupole term of classical electrostatics. The function

gðrÞ is chosen bearing in mind that the quantum core

correction should only be significant at distances smaller

than the distance between nearest neighbours in a per-

fect crystal lattice and that the quantity qijðr; h;/Þ, as
well as its first and second derivatives, should remain
continuous everywhere within the interval of variation

of parameters r, h, / encountered in a simulation. In the

example described below the function gðrÞ for bcc

vanadium was chosen in the form gðrÞ ¼ 2:7�
102ðr � rQCÞ3=N 2

d for r < rQC, where the radius rQC of

the quantum core region equals rQC ¼ 2:58 �A. By

choosing the value of rQC smaller than the distance be-

tween nearest neighbour atoms, we make sure that

other properties of the original Finnis–Sinclair po-

tential, for example elastic constants, remain entirely

unaffected by the presence of the quantum core. The

total energy of interatomic interaction in the model (8) is

given by,

Etot ¼
X

a

"
�
X5
n¼1

Hna

ffiffiffiffiffiffiffiffiffiffiffiffi
H 2

n ðaÞ
q

þ
X10
n¼6

Hna

ffiffiffiffiffiffiffiffiffiffiffiffi
H 2

n ðaÞ
q #

þ 1

2

X
a 6¼b

V ðRabÞ: ð9Þ

Here H 2
n ðaÞ is the n-th eigenvalue of the matrix ð0j bH 2j0Þ

for atom a and Hna is the occupation number corre-

sponding to this eigenvalue. Quantities Hna satisfy the

sum rule
P

n Hna ¼ Nd.

To illustrate the difference between the introduction

of the quantum core corection to the Finnis–Sinclair

model and the re-parameterisation of the model (1), in

Fig. 2 we plotted the energy–volume curves calculated

using density functional theory, the original Finnis–

Sinclair potential for vanadium [8], the re-parameterised



Table 1

Energies of formation of various configurations of single self-interstitial atom defects in body-centred cubic vanadium calculated using

density functional theory, two different forms of the Finnis–Sinclair potential, and the quantum core potential described in the text

Orientation DFT [5] FS (eV) [8] FS (eV) [1] QC (Nd ¼ 3) (eV)

111 3.14 4.58 3.27 3.22

110 3.48 4.14 3.66 3.49

100 3.57 4.79 3.60 4.11
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Finnis–Sinclair potential for vanadium described in [1],

and the quantum core-corrected potential given by Eq.

(8) for Nd ¼ 3.

Fig. 2 shows a noticeable difference between the en-

ergy–volume curve calculated using density functional

theory and the re-parameterised Finnis–Sinclair poten-

tial given in Ref. [1]. The original form of the Finnis–

Sinclair potential [8] as well as the quantum core

potential both agree better with the density functional

results.

We also carried out preliminary tests of the quantum

core potential in simulations of equilibrium configura-

tions of single atom self-interstitial defects. The energies

of formation of defects calculated using density func-

tional theory [5] and two versions of the Finnis–Sinclair

potentials available in the literature [1,8] are given in

Table 1. Values obtained using the quantum core po-

tential agree better with density functional calculations

than those found using the original Finnis–Sinclair po-

tential [8]. In comparison with the re-parameterised

version of the Finnis–Sinclair potential [1] we find a

somewhat more consistent pattern of ordering of ener-

gies of defects (note that potential [1] predicts the higher

formation energy for the 110 self-interstitial configura-

tion in comparison with the 100 configuration). These

preliminary results suggest that the approach described

in this paper may help in understanding microscopic

mechanisms of formation of self-interstitial atom defects

in fusion materials.
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Appendix A

The fifteen independent functions describing the

angular part of the matrix ð0j bH 2j0Þij have the form
D2
xy;xy ¼

1

4
ðl2 þ m2 þ 8l2m2Þ

D2
xy;yz ¼

1

4
lnð1þ 8m2Þ

D2
xy;xz ¼

1

4
mnð1þ 8l2Þ

D2
xy;x2�y2 ¼ lmðl2 � m2Þ

D2
xy;3z2 ¼

ffiffiffi
3

p

2
lmðn2 � l2 � m2Þ

D2
yz;yz ¼

1

4
ðm2 þ n2 þ 8m2n2Þ

D2
yz;zx ¼

1

4
lmð1þ 8n2Þ

D2
yz;x2�y2 ¼ mn l2

�
� m2 � 1

4

	
D2

yz;3z2 ¼
ffiffiffi
3

p

4
mn½3n2 � ðl2 þ m2Þ�

D2
zx;zx ¼

1

4
ðn2 þ l2 þ 8n2l2Þ

D2
zx;x2�y2 ¼ nl l2

�
� m2 þ 1

4

�
D2

zx;3z2 ¼
ffiffiffi
3

p

4
ln½3n2 � ðl2 þ m2Þ�

D2
x2�y2 ;x2�y2 ¼

ðl2 � m2Þ2

2
þ ðl2 þ m2Þ

4

D2
x2�y2 ;3z2 ¼

ffiffiffi
3

p

4
ðl2 � m2Þ½n2 � l2 � m2�

D2
3z2 ;3z2 ¼

1

4
½4n4 � n2ðl2 þ m2Þ þ ðl2 þ m2Þ2�;

ðA:1Þ

where l ¼ sin h cos/, m ¼ sin h sin/ and n ¼ cos h are

the direction cosines of the direction of the interatomic

bond, and h and / are the azimuthal and polar angles

defined in a chosen Cartesian system of coordinates.
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